Networks and the Macroeconomy: An Empirical Exploration∗
نویسندگان
چکیده
The propagation of macroeconomic shocks through input-output and geographic networks can be a powerful driver of macroeconomic fluctuations. We first exposit that in the presence of Cobb-Douglas production functions and consumer preferences, there is a specific pattern of economic transmission whereby demand-side shocks propagate upstream (to input-supplying industries) and supply-side shocks propagate downstream (to customer industries) and that there is a tight relationship between the direct impact of a shock and the magnitudes of the downstream and the upstream indirect effects. We then investigate the short-run propagation of four different types of industry-level shocks: two demand-side ones (the exogenous component of the variation in industry imports from China and changes in federal spending) and two supply-side ones (TFP shocks and variation in knowledge/ideas coming from foreign patenting). In each case, we find substantial propagation of these shocks through the input-output network, with a pattern broadly consistent with theory. Quantitatively, the network-based propagation is larger than the direct effects of the shocks. We also show quantitatively large effects from the geographic network, capturing the fact that the local propagation of a shock to an industry will fall more heavily on other industries that tend to collocate with it across local markets. Our results suggest that the transmission of various different types of shocks through economic networks and industry interlinkages could have first-order implications for the macroeconomy. JEL Classification: E32.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملCRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran
Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomal...
متن کاملMulti-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks
Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...
متن کاملNew Evidence on the Information and Predictive Content of the Baltic Dry Index
This empirical study analyzes the information and predictive content of the Baltic Dry Index (BDI) with respect to a range of financial assets and the macroeconomy. By using panel methodological approaches and daily data spanning the period 1985–2012, the empirical analysis documents the joint predictability capacity of the BDI for both financial assets and industrial production. The results re...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کامل